Counter-Cryptanalysis
نویسنده
چکیده
We introduce counter-cryptanalysis as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead, countercryptanalysis exploits unavoidable anomalies introduced by cryptanalytic attacks to detect and block cryptanalytic attacks while maintaining full backwards compatibility. Counter-cryptanalysis in principle enables the continued secure use of weak cryptographic primitives. Furthermore, we present the first example of counter-cryptanalysis, namely the efficient detection whether any given single message has been constructed – together with an unknown sibling message – using a cryptanalytic collision attack on MD5 or SHA-1. An immediate application is in digital signature verification software to ensure that an (older) MD5 or SHA-1 based digital signature is not a forgery using a collision attack. This would certainly be desirable for two reasons. Firstly, it might still be possible to generate malicious forgeries using collision attacks as too many parties still sign using MD5 (or SHA1) based signature schemes. Secondly, any such forgeries are currently accepted nearly everywhere due to the ubiquitous support of MD5 and SHA-1 based signature schemes. Despite the academic push to use more secure hash functions over the last decade, these two real-world arguments (arguably) will remain valid for many more years. Only due to counter-cryptanalysis were we able to discover that Flame, a highly advanced malware for cyberwarfare uncovered in May 2012, employed an as of yet unknown variant of our chosen-prefix collision attack on MD5 [SLdW07, SSA09]. In this paper we disect the revealed cryptanalytic details and work towards the reconstruction of the algorithms underlying Flame’s new variant attack. Finally, we make a preliminary comparision between Flame’s attack and our chosen-prefix collision attack.
منابع مشابه
Energy Efficient Wireless Encryption
The current encryption standard for wireless networks recommends using the AES cipher in the counter (CTR) mode for confidentiality and the cipher block chaining (CBC) mode for authentication. In the counter mode, a 128 bit counter is encrypted using the AES into 128 bit keystream which is then XORed with 128 bits of plaintext before transmission. This operation is repeated for the entire frame...
متن کاملImpossible Differential Cryptanalysis on Deoxys-BC-256
Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...
متن کاملCryptanalysis and Improvements of the Quasigroup Block Cipher
This article presents results on the cryptanalysis of a quasigroup block cipher, which was previously proposed. The quasigroup block cipher provides an attractive encryption system for resource constrained environments. Here, we identify the “odd-bit” and “identical-word” problems with the cipher and recommend configurations of the QGBC to counter these. Following this analysis, we propose an i...
متن کاملA new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملCryptanalysis of YCN key assignment scheme in a hierarchy
In this article, we present counter-evidence to point out that the YCN cryptographic key assignment scheme in a hierarchy is not secure. 2000 Published by Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013